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Abstract

Let /5 be a Banach space and I and K two Iilbert spaces. The spectral

dilavon of LB,/ )-valued measures is studied and it is shown that the recent

results of Makagon and Saleln (1986) and Rosenberg (1982) on the dilation of

L(]\',H)-vulued measures can be extended to hold for the generul Banach space

setung of L(B,[[)-valued measures. These L (B, }-valued measures are closely

connected to the Banach space vulued processes. This connection is recalled and as

application of spectral dilation  of

L(B,H)-valued measures the well known

stationary dilaton results for sclur valued processes 1s extended to the case of Banach

space valued processes.
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1. INTRODUCTION. A simple dilation theorem for measures asserts that a Hilbert space H
can be imbedded in a larger Hilbert space K so that a given H-valued meaure £(') can be

constructed by the projection of a simpler K-valued measure ¢(,, more precisely,
£(A) =Pg(A), forall A€ X (1.1)

where X is a fixed o -algebra and P is the orthogonal projection on K onto H. In this

case ¢() is called a dilation for &(-).

Niemi [16] proved the following dilation theorem: Every countably additive H -valued
measure &(-) on the Borel subsets of a locally compact Hausdorl space ) has a countably
additive orthogonally-scattered dilation ¢(-) of the form (1.1). Chatterji [3] noted that the
existence of Niemi’s dilation is an algebraic property and it remains true for any bounded

additive vector valued function on any o-algebra L.
A popular dilation theorem for an H -valued process z; asserts that one can express z; as
I, =Pyl) teR, (12)

where y, is a stationary K-valued process and P is the orthogonal projection on K D H
onto H . This kind of dilation theorems started by Abreu in [1] as early as 1970, where he
proved any harmonizable process in the sense of Cramer [2] has a stationary dilation of the
form (1.2). In [14] Miamee and Salehi charaterized all the processes which have stationary
dilations and showed that this class is exactly the same as the class of harmonizable processes in
the sense of Rozanov [22]. Several other authors have established some useful dilation

theorems [12], [15], [16], [18], and [19].

Of course dilation results of the form (1.1) are closely tied with those of the form (1.2).
This is because of the well known fact that every H-valued stationary process z, has a spectral

representation of the form
z, =f e "¢(ds), forall t € R, (1.3)

for some orthogonally scattered H -valued measure ¢(-).



In (1982) Rosenberg [21] introduced the following dilation problem: Let II) and H be two
Hilbert spaces, does any L(H,,/{)-valued measure 7(:) on ¥ has a spectral dilation of the

form
T(A) =PE(A)S, forall A€ X, (1.4)

where E(-) is a spectral measure on a Hilbert space K D H, § is a linear operator in
L{H,,K) and P is the orthogonal projection on K onto H . (We hLave stated this in
slightly different way to make it consistent with the other dilation problems (1.1) and (1.2)).
Among other important results Rosenberg proved an Equivalence Theorem which states the
equivalence of this problem with the existence of a 2-majorant (to be defined in Section 2) and
with some other kinds of dilation problems. (Note that Rosenberg’s dilation theorem is a
generalization of Niemi’s dilation (1.1). In fact, if we replace the Hilbert space ff) in
Rosenberg’s dilation, by the complex numbers € then we arrive at Niemi’s dilation since
L(@ H) can be identified with / . Rosenberg was also able to show that if F, is a finite

dimentional Hilbert space, say ¢" , then his dilation problem has a positive answer.

Makagon and Salehi in their recent work [10] studied Rosenberg’s question extensively.
They first gave an example showing that Rosenberg’s dilation question is not valid in general,
and then proved several useful theoremns concerning this problem including some results on the
positive direction.

The main purpose of this note is to take one step further and replace the Hilbert space I,
by a Banach space B , 1o see whether an L(53,/H) -valued measure 7Y{(-} has a dilation of
the form

T(A) =PE(A)S, forall A€ Y, (1.5)

where E(‘) is again a spectral measure on some Hilbert space K 2 H, S € L(B,K) and P
is the orthogonal projection on K onto H . We will show that most of the dilation results

of Rosenberg [21] and Makagon and Salehi [10] can be extended to our Banach space setting.



The study of these L(B,H)-valued measures are essential in the study of Banach space
valued stochastic processes (for a discussion on these see Section 5) which have been already
introduced and studied by several authors (see for example [4] and [13] ). In fact, this has been

our motivation of studying these kind of measures and their dilations here.

After setting up the notation and preliminary facts in Section 2, we prove the main part of
Rosenberg’s Equivalence Theorem for the Banach space case in Section 3. In Section 4 we
extend main dilation theorems of [10] to our case. Finally in Section 5 after recalling the
definition of Banach space valued stochastic processes and revealing their close tie with
L(B,H)-valued measures we use the results of Section 4 to obtain some stationary dilation
results for these stochastic processes, thereby extending the well known dilation theorems for

simple scalar valued stochastic processes to the Banach space valued stochastic processes.

2. PRELIMINARIES. In this section we set up the notation and preliminary facts which are

frequently used in the sequel. It will be understood that:

2.1 Notations.

(a) X is an algebra, of subsets of aset Q ,

(b) W denotes a normed vector space over the complex numbers ¢ with norm being denoted by | |,

(¢) B stands for a Bananch space over ¢, with norm | |,

(d) H and K denote Hilbert spaces over € with inner product ( , ) and norm | |,

(e¢) W'and W’ denote the dual and adjoint space of W respectively, and the action of any functional
[ on W atsome z € W is denoted by f(z) =<z,f>,

(f) For any two normed linear spaces W, and W,, L(W;, W) denotes the space of all continuous
linear operators from W, into W, with the norm | |

2.2 REMARK. The distinction between the adjoin space W° and the dual space W' is

important here: W' is the space of all continuous linear functions on W while W’ is the

space of all continuous conjugate linear functionals on W. i.e.



W (7% f() € W
For any A € L(W,,W,) one can define the adjoint A" and the transpose A'of A as follows
A" Wy = W], A°(f)=foA; forall f € W3,
A" Wy = W{; A'(f) =/ 0 A; forall f € W,.
Thus, again A'and A" are in general different. However |[4*|=|4'| =4 |
2.3 DEFINITION. An operator M in L(B,B’) is called hermitian if for all z, y € B,
<z, My> =<y, Mz>, and it is called nonnegative (in symbols > 0 ) if it is hermitian and

for all z € B, <z, Mz> > 0. The set of all nonnegative operators from B into B’ is

denoted by L*(B,B").

2.4 DEFINITION. Let m be a finitely additive (f.a.) W-valued measure defined on I.

The semi-variation ||m || of m is defined to be

I ||=sup{|Ag m(A)ta 7 €TQ), ta€ € |ta] < 1}
T

where I1((2) denotes the set of all ¥ -partitions of . Note that in general |[m]|| € [0,00], in

case ||m|| < oo; the measure m is said to have finite semi-variation. The space of all W

-valued f.a. measures on X with finite semi-variation is denoted by M(W), Clearly |||
provides a norm on M(W). In fact, if W is a Banach space then (M (W), || |]) becomes a

Banach space as well (see [5], p. 53).

We denote by S(W) the set of all X-simple, W-valued functions of the form
/ =‘§‘; 15%, & €L, 7 €W, i=l,.,n. For mE€ M(W*) and f =€é1 152 € S(W)
define (cf. [5], § 7)

fﬂ < f;dm> =‘é <I;,m(A,')> .

To any f € S(W) besides the familiar sup-norm, namely



If lop =sup{lf (w) | w e}
we associate another norm defined by
If lo =sup{lf <f,dm>] m e M(W"): ||m]| < 1}. (2.5)

The following lemma (see [10, Lemma 2.4 & Remark 2.7] ) shows that | |, is actually a

norm on S( W) and gives some of its further properties.

2.6 LEMMA. With the notation just described
(a8) | |ois anormon S(W),
(b) The mapping m — [ <:,dm> is alinear isometry from (M(W"), || |) onto (S(W), | |w) ",
(¢) Forevery f € S(W), wehave |f |0 < |f |no >
(d) When W is finite dimenstional these two norms | |,,,and | |, on S(W) are equivalent

but not in general.

2.7 LEMMA . Let T be an L(B,H)-valued f.a. measure on X. Then
(a)
ITC =sup IT()z |, z € B, |¢|<1}=sup {IT()'y|l, y € H, [y| <1}
< 4sup {|T(): A€ L},

where [|T(-)|], ||T(‘)z || and ||T(‘)y|| denote the semi-variation of the measures T(-),
T(-}x and T(:) z respectively.

(b) If moreover ¥ is a o-algebraand T is weakly countably additive (w.c.a.) then
sup {{T(A) ] A€ E} < o0
Proof. (a) follows from the fact that for any operator T € L(B,H)
IT|= sup {|Tz|: 2 € B, |z|< 1}
=sup {(Tr,y)z €B, yeH, |z|<1, [y| <1}

(b) For each z € B and y € H consider the complex-valued measure (7T(-)z,y). Itis well

known that



sup{( T(A)z,y) | A€ L.} =C(z,y) < o0
Now for each fixed z apply uniform bounded principle to the set {{ T(A)z,’): A€ L} of
functionals on H and conclude that

sup{|T(A)z || A€ L} =C(z) < o0, forall z € B.

Now using this, one can apply the uniform boundedness principle again, this time to the set

{T(A): A€ X} of operators in L(B,H) to get sup{|T(4) [} < oo

n
Let T be afa. L(W;,W,) -valued measure on X. For each f ='§1 14, 7; in S(W,)

one can define (cf. [5],§7).
[ faT =% T(&):
This integral provides a linear operator ®7: S(W,) — W, defined by ®4(f) =/ fdT.

2.9 LEMMA. ([10]. Let T be a fa L(W,W,)-valued measure on X . Then
Qr: (S(W)), | |} — Wy is continuous if T has a finite semi-variation ||T||. If this is the

case we further have |® 7| =||T]|.

2.10 REMARK. As we know the set M(L(B,B*)) of all L(B,B")-valued f.a. measures
with finite semi-variation equipped with the semi-variation norm is a Banach space. On the
other hand L(B,B") is isometric to the conjugate space (B @ B)’ of the tensor product
B @ B equipped with the projective norm ([25], p. 190). So M(L(B,B‘)) can be
identified with M((B & B)‘). But by Lemma 2.6, M((B ® B)") is isomorphic to
(S(B @ B), | |)’. Hence M(L(B,B")) is isomorphic to (S(B @ B), | |)" and for any

T € M(L(B,B") and its isomorph of ¢ in (S(B @ B), | |o)* we have

<¢, 4> =] <¢,dT>, forall ¢ € S(B @ B)

2.11 DEFINITION. (a) A f.a. L(K,K) -valued measure E defined on an algebra X is

called a f.a. spectral measure in K if (i) for every A€ £; E(A) is an orthogonal projection



in

K, (ii) E(A)E(4;) =0, for every pair A, and A; of disjoint sets in X . If in addition X is a
o -algebra and E is w.c.a. then FE is called a c.a. spectral measure or simply a spectral

measure.

(b) We say that a f.a. (w.c.a.) measure T: ¥ — L(B,H) has a f.a. spectral dilation
(spectral dilation) if there exist a Hilbert space K D H, a f.a. spectral dilation (spectral

dilation ) E(-) in K, and an operator S € L(B,K) such that
T(A) =PE(A)S, forell A€ X,
where P is the projection of K onto H.

(¢) We say that a f.a. (w.c.a.) measure T defined on the algebra (o-algebra) ¥ with
values in L(B,H) has af.a. (w.c.a) 2-majprant M if M is fa. (w.c.a) LY(B,B")-valued

measure on X such that
I'El |T(A) 2 F < ‘El <z;,M(A;)z;>, forall z;, € B, A; € L.
=i )

If £ is a o-algebra and € in a c.a. H-valued measure on X then the integral f fd€is

well defined for all bounded measurable complex-valued functions f (cf. [6], IV. 10 or [5] §

7). Nowif T is aw.c.a L(B,H)-valued measure on X then it is known that it is strongly
ca. (6], IV 10.2). So for each z € B, the H -valued measure 7(‘)z is c.a. and hence

[ fd(Tz) is defined. One can then define [ fdT by
([ fdT)z =[ fd(Tz), z € B. (2.12)
For this integral one can easily check that
| fdT| < |IT|| |f lop for all bounded functions f, (2.13)
U(f fdT)V =[ fd(UTV), for all bounded functions f, (2.14)

([ fd(Tz),y) =f 7d(Tz,y), forall z € B, y € H. (2.15)



Finally we will need the following lemmas in the proof of Theorem 4.4.

2.16 LEMMA. [21] Let y(-) be a f.a. nonnegative real-valued measure on a o-algebra X.

Define foreach A€ X
R - . .
p(4) =in[{§l (A, A'e I, {A'} s a countable partition for A}.

Then u(A) is ac.a. nonnegative real-valued measure on X such that
0 < u(8) <1(8) <) < oo

Next Lemma is the extension of Jordan-Von Neuman Theorem for the Banach space setting

(see p. 124 in [27] and Lemma A.2 in [21] ).

2.17 LEMMA. Jordan-Von Neuman. Let B be a Banach space over ¢ and let R(‘) be a
nonnegative real-valued function defined on B such that
(i) R(-)'/? is a seminorm,

(ii) R(-)'/? satisfies the parallelogram law i.e.
R(z+y) + R(z-y) =2R(z) + 2R(y), forall z,y € B,

(iii) there exists K > 0 such that R(z) < K|z [}, forall z € B.

Then (a) R(-) can be recovered from a unique bounded nonnegative hermitian sesquilinear

functional T(-,)) on B XB to . i.e.
R(2) =T(2,2) and |T(2,9)| < K| Iy (2.18)

(b) There exists a unique bounded nonnegative hermitian linear operator A on B to B’

such that |4 | < K and T(z,y) =<y,Az>, forall z, y € B.

Proof. (a) Foreach z,y € B define T(z,y) by

T(z,5) =(R(2+y) - R(z-v)) - S{(R(ie+y) - R(iz-y)).

Then follow the proof of Jordan-Von Neuman Theorem [27, p. 124] to see that T(:,") is a
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nonnegative hermitian sesquilinear function on B X B such that R(z) =T(z,z) for all
z € B. Then using Schwarz inequality for T we get |T(z,y)| < R(z)Y°R(y)'?

<Klz||y| foralz, y €B.

(b) Foreach z in B define g,(*) on B to €byg,(y) =T(z,y), for all y € B, clearly
g, is conjugate linear. Since
lo:(3) | =1T(z,9) | S K|z | |ly]  (by 2.18),
we see that g, is also bounded. So g, € B*. In fact
9| < K |z |, forall z € B. (2.19)

Define A: B — B’ by Az =g, then one can easily see that A is linear. A is also

bounded. In fact by (2.19) we have |A| < K. Since we can write
<y,Az> =<y,0.> =¢.(y) =T(=z,y), for all z,y € B,
the proof is complete.
Having proved Jordan-Von Neuman Lemma for our Banach space setting the proof of the

following lemma is exactly similar to its Hilbert space version in [21] and hence omitted.

2.20 LEMMA . Let B be a Banach space and let M(:) be af.a. L*(B,B‘)-valued measure
on X. Let for each z € B, v,() =<z,M(-)z> (which is clearly a f.a. nonnegative real-
valued measure on X ) and let for each z € B, u,() be the nonnegative real- valued
measure on XL corresponding to v,(") as in Lemma 2.16. Then
(a) for each A€ ¥ there is a unique operator F(A) in L¥(B,B") such that

<z, F(A)z> =up,(4), foreach z € B.
(b) the set function F(-)is w.c.a.on X and

0 < F(A) K M(A) N(Q2), foreach A€ L.

3. THE EQUIVALENCE THEOREM. In this section we extend a very useful result of
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Rosenburg [21] namely his Equivalence Theorem for L(H,,H)-valued measures to the case of
L(B,H)-valued measures. Our interest in L(B,H)-valued mesures is because of their
essential role in the integral represntation for Banach space valued stochastic processes (For
some more precise comments see the beginning pragraph of Section 5). The proof of our
Equivalence Theorem 3.2 goes along the same lines as the proof of Rosenberg’s Equivalence

Theorem.

We start by proving the following Lemma.
3.1 LEMMA . Let T be any L(B,H)-valued measure and M be any L(B,B")-valued
measure on X . Consider the kernel K on ¥ XX defined by

K(A,4) =M(ANn A) - T(AY'T(4), A Ae T

Then, (a) forany A4,,...,A, € Zandany z,,...,z, € B we have
')':1 <z K(&,8))z;> ="21 <z, M(AN 4;)z;> - I.El T(A) = [
1, )= f,j= =]

(b) M is a 2-majorant for 7T iff the kernel K(-,-) is a positive definite kernel on ¥ X I

(in the sense of Definition 2.5 in [12]).

Proof. (a) is clear. (b) Suppose M is a 2-majorant for T then by Lemma 2.6 in [12] it
suffices to show that the scalar-valued kernel k¥ on (X XB) X(X X B) defined by
k{(Az), (A2')] =<z',K(AA)z> is apositive definite kernel. For any ¢y, ...,¢, in @,
and any a, =(A,¥1),...,a, =(A,,y,) in ¥ X B we have

c_jk(aha;’)ci = E EJ c|'<yj11\’(An'»Aj)y|'>

=l

",IM:

= ..21 <ejyy, K(4i,4))qyi> = '>':-——-1 <z;, K(&i,4;)z:>,
ij= i
where z; =c¢;y;, ¢ =I,...,n. Thus by (a)

T Gk(apaj)e = L <z,M(ANB))z;> - | T(A)z: P,
1,5=l N, J=1 1=
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and this is nonnegative (since M is a 2-majorant for T ). Now to check the conjugate
symmetry property of & on (X XB) X(XXB) we note that for any a =(4A,z) € £ X B and

o =(A"z') € £ X B we have

k(o) =<z!, K(A,M)z> =<z M(An Az > - <2/, T(&) "T(A)z>

= Zz, M(AN A)2'> - (T(&)2', T(A)z),

this is because A(AN 4&') is nonnegative and hence hermitian (see Definition 2.1 (¢) and

Definition 2.3). We can further write

kla,') = <z,M(AN Ad)z'> - (T(A)z,T(»A’)v:t’)

= <z,M(ANAa)z'> - <z, T(A) ' T(A)z'> = k(d,a) .
This completes the proof of one way. Proof of the other way is similar.
3.2 EQUIVALENCE THEOREM. (a) A f.a. L(B,H)-valued measure T on an algebra &
has a f.a. spectral dilation iff it has a f.a. 2-majorant.
(b) A w.c.a. L(B,H)-valued measure T on a o-algebra X has a spectral dilation iff it has

a w.c.a. 2-majoranat.

Proof.. We will just prove part (b) since the proof of (a) is essentially the same. Suppose T
has a w.f.a. spectral dilation i.e. suppose there exists a Hilbert space K O H and a spectral

measure FE(-) in K such that
T(A) =PE(A)S; forall A€ X,

where P is the projection of K onto H and § in an operator in L(B,K). Then for every

collection z,, ... ,z, in B and every collection 4, ...,A, in ¥ we can write
n n n .
IE T(&)=P =IP(E B(8)S5F < £ <a, S"B(A)Sa>
§ = = § =]

One can then easily check that M(-) =S E(:)S serves as a w.c.a. 2-majorant for T. To see

the other way suppose T has a w.c.a. 2-majorant M. Define the kernel K(-,") asin Lemma
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3.1. By this Lemma K(-,") is a positive definite kernel on £ XX in the sense of Definition
2.5 [12]. Thus one can apply The Kernel Theorem (see Theorem 2.10 in [12]) to conclude that

there exists a Hilbert space H, and an L(B,H,)-valued function R(‘) on X such that
K(AA) =R(4&')°R(4).

Now take K =H @ H, and define T: B — K by T(A) =T(A) + R(A). (Here we have

identified H with H & {0}in K ). Then forany z,z € B,

<z,T(4)"T(A)z'> =(T(4)z,T(&)z")x =(T(A)z,T(A)z")y + (R(L)z,R(A)z") 4,
= <z,T(4)'T(&)z'> + <z,R(4)‘R(A)z'> =<z,[T(4) T(A) + K(&,4)]z'>.

This means 7(4)°T(4') =M (AN A'). Now, since M is w.c.a. one can adjust the proof of

Lemma 8.6 in [11] to conclude that T is strongly countably additive. Now clearly we have
T(A) =PT(4), for each A€ . (3.3)

Let E(A) be the projection on K onto the subspace spanned by {T(A)z: A'€ L,

A C A, z € B}. Then one can show that E(-) is a spectral measure in K and

T(A) =E(A)T(Q), forall A€ X.

Hence T(A) =PT(A) =PE(A)T(R)ie. T(A) =PE(A)S, with §=T(Q). (Here, to
compete the proofs, the ideas of section 5 in [11] are needed. For more details see pages 443-

444 there).

4. SPECTRAL DILATION. In this section we study the existence of dilations for
L(B,H)-valued measures. When B is simply the complex number €, one is just in the case
of H-valued measures (Note that L(@,H) =H), and for this case it is shown by Niemi [18]
that: A f.a. H-valued measured 7 with finite semi- variation has a f.a. spectral dilation iff
there exists some constant C such that for every collection f; of scalar valued simple

functions
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n 2 n o
Z [ 1edTP S CIE 1 Floy (4.1)

On the other hand fortunately Grothendieck’s inequality guarantees the validity of (4.1). Thus
each L(C,H)( %H)-valuéd measure with finite semi-variation has a spectral dilation.
Rosenberg {21] among other important results showed that when @ is replaced by any finite
dimensional Hilbert, space say " still the problem of dilation has a positive answer, namely
any L(G",H)-val‘ued measure T has a spectral dilation. When this space is replaed by any
Hilbert space H, the problem is extensively studied by Mahagan and Salehi [10] and they
were able to show that in general an L (H,H)-valued measure does not have to have a spectral
dilation. They then continued to stud); conditions which guarantee the existence of a dilation

and in particular generalized Niemi’s result mentioned above in the following way:

4.2 THEOREM. (a) Let T be af.a. L(H,,H)-valued measure on an algebra £ . Then T

has a f.a. spectral dilation ifl there exists a constant C such that for every collection of simple

n
functions f; = T 1 azfin S(H))
i

EIf saTP < cau;{gi D(F(A)2ha) | F e M(LIKK)), IIFI| < 1}. (43)

(b) If T is a w.c.a. measure on a o-algebra £, then (4.3) is a necessary and sufficient

condition for T to have a spectral dilation,

Here in this section we first extend the above criteria for dilatability of L (& H)-valued and
L(H,,H)-valued measures to the case of L (H,H)-valued measures, where B is any Banach

space ( Theorem 4.4) and then use this to get a sufficient condition for dilatability.

4.4 THEOREM. (a) Let T be a f.a. L(B,H)-valued measure defined on an algebra Z.

Then 7T has a f.a. dilation iff there exists a constant C such that for all collection of simple

N
functions f; =.21A'x;" in $(B)
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kél I.-gl T(Al')fl«'.-"r"7 < CG“P{hél n'gl < 3’.‘[" F(Ai)zl'k> I F e M(L(W’W.))’
IFl < 1) (4.5)

(b) If T is a w.c.a. measure on a o-algebra L. Then (4.5) is necessary and sufficient for T

to have a spectral dilation.

Proof. For any two simple functions f and ¢ in S(B) we define a new simple funciton

N N
fog in S(B@B) as follows: suppose /=')_:4 152; and 9=_211A11.' we let
i= [ v

N
fog=2ZX lpz; @ y. Since by Remark 2.10 we know that (B @ B)" =L(B,B’) we have
'

N
S 0 gk —swnl|E, <z F(A)u > | Fe M(L(BBY), IIFIIS1)  (46)
Using this condition (4.5) can be reformulated as
2 [ 7:dTF < ClESs 0 filow forall fy,...,[, €S(B). (4.7)

Now if T has af.a. dilation then by the Equivalence Theorem 3.2 the measure T must have
a 2-majorant M. Thus (4.5) holds with C =||M || < o0 (Note that any 2-majorant is

necessarly of finite semi-variation). This completes the proof of one way of (a). For the other

way we assume that (4.5) or equivalently (4.7) holds and will prove that T has a f.a. 2-

majorant which in view of The Equivalence Theorem completes the proof.

Consider the set U defined by
U ={k2=lf,‘ o fx: fi's in S(B) with Z |f f¢dT? =1, n € N}.

from (4.7) it follows that |¢ |, > -é,-, for every ¢ € U. Since U is a convex set in
S(B @ B) itfollows from Hahn-Banach Theorem ([24], Theorem 3.4) and Lemma 2.10 that

there exists some real number 5 and a f.a. set function G € M(L(B,B")) with ||G || =1

such that for every ¢, v € S(B @B°) with ¢ € U and 9| < —lé— we have
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Re<¢,G> 2 7 2 Re<y,G >,

<¢,G>

where <¢,G’> =f <¢,dG>. Since for a=__|<¢’G>|!

|<$,G>|=Re<ay,G> and

h{) |oo = ‘0\[) ‘oo we have

: 1, : Ly Ly =1
72 supRe < ¥,G>: [Wlo < )= suwp{| <¥,G>| Wl = Fl=7lIGl=75

Thus we have Re < ¢,G> > —é,- , for all ¢ € U. Now put M(A) = G(a) +2G(A) J ,
A€ T where J is the standard linear isomorphism from B inte B** defined by
<z’ Jr> =<z_,x'_>’ forall z € B,z° € B’ (4.8)

Note that G(A): B — B’ and hence G(A)*: B” — B’. Thus both G(4A) and G(A’)J
belong to L(B,B’) hence M(A) € L(B,B"), for each A€ £. Thus M is an L(B,B’)-
valued measure. Furthermore M € M(L(B,B)), in fact, one can easilty check that

IM|| £ 1. M is also hermitian valued (see Definition 2.3), because for any z and y in B

we have
<y,M(A)z> = <y,G(A)x>+2<y,G(A)'Jz> _ <y’G(A)z>_;<G(‘A)y'Jz>
by (48) = <y,G(A)z>;W _ <y,G(A)x>;W‘
Thus

<y,G(A)z> + <z,G(A)y>
o

<y,M(Q)z> = =<z,M(4A)y>. (4.9)

n
Now for any collection of f;,...,f. in S(B) with kEl |f fedTF > 0 using (4.9) we can
write

-1 -1
J < [kg, |ffkm2] Z fxofr, dM> =Re [ <["E‘U fdel"’] REIENIT dG>z%,

which implies that
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S 1dTIS O < E Jiofu, dM>. (4.10)

To prove that M is actually a 2-majorant for T° we have to show that (4.9) remains valid in
the other case namely when k£=:1 If JxdT[F =0. This can be proved exactly as the proof of this
fact in Theorem 4.3 in [10} and hence omitted.

(b) Since T is w.c.a. and hence of course f.a. by part (a) there exist a f.a. 2-majorant M
such that

|ZT(A)af < E <, M(A)z;>, for all 2, € B, A € T.

From Lemma 2.20 it follows that there exists a w.c.a. measure F on ¥ such that for all

€ B, A€ X
o0 . .
<z, F(A)z > =z'nf{_§l <z,M(A')z>: {A'}is a countable partition for A}

Let 4, ...,4A, be some fixed disjoint elements of ¥ and z,,...,z, some fixed elements

in B . Givenany § > 0 let {Aj: i =1,2,...,} be countable partition of A; such that
.}_:_1 <z;, F(AJ')2'1> < <zj,M(Aj)2j> + % .

Since T is w.c.a.,, and hence strongly countably additive ([6] IV. 10.1 ), T(:)z is countably
additive and we can write

n n k . n k .
2 9 ¢ o) . {
IJ.EI T(4aj)z; " = kh_‘f;o IJE ( li=lJ aj)z; [F < kll_{r;o j};——l <z;,F( L‘_=1J bj)z;>.

So

n n k . n
I,E. T(4;)z;f =X lim £ <z F(4a))z;> < ,-E—x <z;,M(Aj)z;> +6.

J=1 k=00 i=

Since 6 is arbitrary, this implies that M is a w.c.a. 2-majorant for T. Thus by The

Equivalence Theroem 3.2, T has a spectral dilation.
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The ideas of the proof of last theorem are similar to the proof of the proof of Theorem 4.2,
as given in [10], which goes along the same lines as the proof of Pietsch’s factorization theorem
in [9]. However, the details of the proof, as one can see from the proof presented here, are

quite different.

Using the main result of this section, namely Theorem 4.4, we can provide some sufficient
conditions for a L(B,H)-valued measure T to have spectral dilation. The following theorem
extends a result in [10] to the Banach space setting. The proof in [10] is quite Hilbertian and
depends on taking an orthonormal basis in some Hilbert space which is now replaced by the

Banach space B, which does not have such a nice basis.
We start with the following definition (cf. [26], [10] ).
4.11 DEFINITION. For any f.a. L(B,H)-valued measure T defined on an algebra ¥ we
define |[ITI1€ [0,00] by |[IT]l| =supl| B T(&)zal 7 €THQ), za€ B , leal < 1} or
equivalently by [||T||| —sup{|€1(f) | f € S(B), If lup < 1}. Thus
[|IT ||} =norm of the operator ®7: (S(B), | lup) — H.
We will need the following lemma given in [10] (cf. also [26]).

4.13 LEMMA . Let H be a Hilbert space. There exists a constant C such that for every

n, meN; t,...,t, €2y, ...,z, €H,
E (6)(a23) < € | EionCo,) Iyl by P ua(ds)

where S, is the unit sphere of the n-dimensional Euclidean space ", and pu, is the
normalized rotationaly invariant measure on S, . For any complex number z, sgn z is equal

to —— if 2540 and 0if z =0.

Iz}

4.14 THEOREM . Let T be af.a (w.c.a) L(B,H)-valued measure on an algebra (a o-

algebra) T . If [||T||| < oo or equivalenly ®7 as an operator from (S(B),| |, into H
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is bounded then T is dilatable.

Proof. Let A, ...,Ay be any disjoint nonempty sets in £, zf, k =1,...,n; i =1,..,N be

any vectors in B we will prove that (4.5) holds. Take a normal basis e;,...,e, for

r
ek, i =1,..,N; k =1,..,n). Then writing zf =% a,-'fpep, we have
p=l

n N n N r N r
Nk , kR . . o
E S Ta)att = BIZTA) Sabo = 2 5 (T(a)e T(A)e) bty
where ¢, =(a,-fp, a,-_zp, ...,a0p) € €. Now apply Lemma 4.13 to get
n N ko N r 0
E I E TP < Ofg |T 2 anlot) | ] T(A) ey P ua(de).

So

n N ko N r

E I ETAP < € [ | E ()L 00057 6 le) Pira(da).
Let

vi(8) =p2=31|t,-’p | sgn(s,t,)e,, £ =1,...,N.
Then
r 2 r r n
. 2 < . < A - k12 .
w(s) F < [pg s |] < u[pg o B =75 £ lak,| (4.15)

Now using Hahn-Banach theorem there exist linear functional ¢, € B* such that ey(eg) =bp.

Then af, =<z} e,> and (4.15) can be rewritten as
2 Ly Eoeo R - B
()P < 5 Bl<ah g>F < <ab £ Taha> o> (4.16)
Let’s introduce the linear operator S: B — B’ by

r
Sz =r p2=31 <z,e,>¢ foral z €B

"
Then (4.16) becomes |y, (s) f < /:21 <z;, Szf> . Thus we have
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2

N n
< CUIT|I| sup(E <ahSeb>: i =1,..N}

S T(a)zk

1=l

z

k=1

Let i, be the integer between 1 and N which gives the sup on the right hand side of

(4.17). Then
n N 2 n
N2k < £k g k
kg ii T(A)zf| < C’|||T|||’=X__3l <z,o,Sz,o>.
This yields
2 |8 e <o Lo <t t>:F e M(L(B,B’
E|T T(a)zt] < ClITHIowlE 5, <shF(&)zt>: F € M(L(B,B")),

n N n
because kE_l <I.";, Sz;';> =_)_:l IEI <z}, Fo(&)z}>, for an L(B,B’)-valued measure Fy

with the property

Fo(A ) =S5 and Fo(A') =0, for all ¢ ?é 1.0.

‘o
So we have proved (4.5).

Note that as shown in [10] this condition |||T|]| < oo is not necessary for T to have a

dilation even in Hilbert space case.

5. DILATION OF BANACH SPACE VALUED HARMONIZABLE PROCESSES. In this
section we will first review the definition of Banach space valued random variables and
processes and set up the necessary definition and preliminary facts about Banach space valued
V-bounded, harmonizable and stationary processes. Then we will apply Theorem 4.4 to study
the stationary dilations of banach space valued harmonizable processes thereby extending the
well known dilation theorems for scalar valued and Hilbert space valued processes ([1], [14],

(10], [16], [18], [19]) to the Banach space valued processes.

Let B be a Banach space and X be a B-valued function defined on a probability space

(Q,L,P). We say X is a Banach space valued random variable if <X,z°> is measurable for
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each z° € B’. A Banach space valued random variable X is called of second order if
[ 1<X,2">PdP < oo foreach z° € B .ie. <X,z°'> € L¥Q,5,P), for all z° € B".

Thus for each second order Banach space valued random variable X we can define an operator
X: B - L*Q,Z,P) by Xz’ =<X,z'>. Thus every second order Banach space valued
random variable X gives an operator, namely X from B’ into H =L%Q,Z,P). Hence one
can think of a second order Banach space valued random variable as an operator in L(B,H),

where B is a Banach space and H is a Hilbert space.

With this background by a Banach space valued stochastic process X;, t € R we mean a
function X;: R — L(B,H) where H is a Hilbert space and B is a Banach space, and from

now on we will call it simply an L (B,H)-valued process.

Let’s now recall the definition of different type of usual scalar valued second order

stochastic processes (which are also interpreted as H-valued processes {23]).
5.1 DEFINITION. An H-valued process z;: R — H is called

(a) Stationary (see [23]) if its correlation function ~(t,8) =(z,,z,) is a function of only

t— s, le.
~(t,8) =~(t-8,0), forall t,s €R.
(b) harmonizable (see [22] ) if its correlation function is of the form
(t,8) =[ [ e - my(dv,du)
where v is a positive definite bimeasure such that

aup{__Ela,-EjV(A,-,Aj): a; € @, |a;| <1, A are disjoint mB} < oo.
i,y =]

(¢) V-bounded (see [2] ), if it is continuous and there exists a constant C such that for

every ¢ € L'(R,Z) we have



[ 2()dt| < C 3 Lo

where the integral is in sense of Bachner [8] , and L'(R,C) is the space of complex-valued

Lebesgue integrable functions on R , and 43 is the Fourier transform of ¢ .
The following result is well known. It has been extended to the L (H,,H)-valued processes

({10] Theorem 6.12 ) and we will extend it in a similar fashion to our Banach space setting.

5.2 THEOREM . ([16], [14]). For, any H-valued process z;, t € R the following are
equivalent

(i) =z, is harmonizable.
(ii) =z, is V-bounded
(iii) there exists an H-valued measure £ on the Borel subsets of R such that
z,=[ e "™¢(ds), forall t€ R
(iv) there exists a Hilbert space K D H and a K-valued stationary process y, such that
z, =Py,; forall t€e R,

where P is the projection on K onto H . (For another version of harmonizability which is

stronger see (1], [2] ).

Definition 5.1 and comments of the beginning paragraph of this section suggest the
following definition (see also 7], [4], [13] ).
5.3 DEFINITION. An L(B,H)-valued process X, is said to be

(a) stationary if for each z € B the H-valued process X,z is stationary,

(b) harmonizable if for each 2 € B the H-valued process X;z is harmonizable

(¢) V-bounded if for each z € B the H-valued process X;z is V-bounded.

The proof of the following theorem is similar to that of Theorem 6.12 in [10] for the Hilbert

space setting and hence omitted.



5.4 THEOREM. Let X, be an L(B,H)-valued process and let the operator
I'(t,s) =X, X;: B — B’ be its correlation function. The following are equivalent

(i) X; is harmonizable
(ii) X; is V-bounded
(ili) There exists a w.c.a. L(B,H)-valued measure Z such that

X, =[ e™Z(ds), forall tE€R.

5.5. REMARK. Last result partially extends the Theorem 5.2 to our case of Banach space
valued stochastic processes. However, part (iv) of Theorem 5.2 which is probably the most
interesting part is missing here in Theorem 5.4. It turns out that these definitions of
harmonizablity and V-boundedness are not strong enough to assure the existence of a
stationary dilation. (For a counter example see Theorem 6.12 (B) in [10]). This problem was
expected because the problem of having a stationary dilation for harmonizable L(B,H.)-valued
processes has a close tie with that of spectral dilation for L(B,H)-valued measures which was
the subject of our study in Sections 3 & 4. As we recall from Theorem 4.14, for instance, in
order to assure the existence of a spectral dilation there, we had to add an extra assumption
(relative to the usual case of H-valued measures) namely |||T||| < oo. This means that to

get the existence of stationary dilation, namely a part (iv), we must impose similar extra

assumptions on the other parts.
Here is the main result of this section

5.6 THEOREM. Let X, be an L(B,H)-valued process and let I'(t,s) =X, X;: B — B” be

its correlation function.

(a}) The following are equivalent (i) X; is harmonizable and the spectral measure Z in a

harmonic representation of X, (see Theorem 5.4 (iii)),

X, =[e™Z(ds)
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has the property |||Z ||| < oo,

(ii) X;is V-bounded and there exists a constant C such that
|/ X6(0)dt|< Ol 1y for all ¢ € LY(R,B),

where L!(R,B) stands for the space of all B-valued Bochner integrable functions w.r.t. the
Lebesgue measure, ¢(s) =[ e ™¢(t)dt is the Fourier transform of ¢ in L'(R,B), and all

integrals are in Bochner sense.

(b) If the L(B,H)-valued process X; satisfies (i) or (ii) then there exists a Hilbert space

K D H and an L(B,K)-valued stationary process Y; such that
X, =PY,, forall tER,

where P is the projectionon K onto H .

Proof . The proof of (i) <> (ii) is similar to that of Theorem 6.17 in [10] and jus.t needs
some modifications. To see (i) => (ii), suppose X, =[ e ™Z(ds) with |||Z ||| < oo. It
follows from Theorem 4.14 that the L(B,H)- valued w.c.a. measure Z has a spectral

dilation. That is to say, there exists a Hilbert space K D H and S € L(B,K) such that
Z(4A) =PE(A)S, for all Borel subsets, A of R,

where P is the projection on K onto H . Let Y =f e ™E(ds)S, t € R. Then one can

see that Y, is stationary (see [4], [13] ) and by (2.14) X, =PY, forallt € R.

5.7 REMARK . One can easily construct an L(B,H)-valued process X; which has a
stationary dilation but does not satisfy condition ((i) or equivalently (ii)) of last theorem. It is
interesting to charactrize the class of L(B,H)-valued or even L(H,;H)- valued processes

which have stationary dilations.
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